High levels of fatty acids increase contractile function of neonatal rabbit hearts during reperfusion following ischemia.
نویسندگان
چکیده
In the neonatal heart the transition from using carbohydrates to using fatty acids has not fully matured and oxidative metabolism/ATP generation may be limiting contractile function after ischemia. This study tested the hypothesis that increasing fatty acid availability increases recovery of left ventricular (LV) work by increasing palmitate oxidation, tricarboxylic acid (TCA) cycle activity, and ATP generation. Isolated working hearts from 7-day-old rabbits were perfused with Krebs solution containing low (0.4 mM) or high (2.4 mM) palmitate and 5.5 mM glucose. Hearts were subjected to 35-min global ischemia before 40-min reperfusion, and rates of glycolysis, glucose oxidation, and palmitate oxidation were assessed. LV work was similar before ischemia but was greater during reperfusion in hearts perfused with 2.4 mM palmitate compared with hearts perfused with 0.4 mM palmitate [6.98 +/- 0.14 (n = 15) vs. 3.01 +/- 0.23 (n = 16) mJ.beat(-1).g dry wt(-1); P < 0.05]. This was accompanied by increased LV energy expenditure during reperfusion [35.98 +/- 0.16 (n = 8) vs. 19.92 +/- 0.18 (n = 6) mJ.beat(-1).g dry wt(-1); P < 0.05]. During reperfusion the rates of palmitate oxidation [237.5 +/- 28.10 (n = 7) vs. 86.0 +/- 9.7 (n = 6) nmol.g dry wt(-1).min(-1); P < 0.05], total TCA cycle activity [2.65 +/- 0.39 (n = 7) vs. 1.36 +/- 0.14 (n = 6) micromol acetyl-CoA.g dry wt(-1).min(-1); P < 0.05], and ATP generation attributable to palmitate oxidation [26.6 +/- 3.1 (n = 7) vs. 12.6 +/- 1.7 (n = 6) micromol.g dry wt(-1).min(-1); P < 0.05] were greater in hearts perfused with 2.4 mM palmitate. These data indicate that the neonatal heart has decreased energy reserve, and, in contrast to the mature heart, increasing availability of fatty acid substrate increases energy production and improves recovery of function after ischemia.
منابع مشابه
Amino acid substrate preloading and postischemic myocardial recovery.
During induced myocardial ischemia for cardiac surgery, myocardial stunning occurs and aerobic metabolism of glucose, fatty acids, and lactate is inhibited as anaerobic pathways predominate. Even following reperfusion, stunned myocardium uses oxygen and substrate inefficiently leading to poor functional recovery as less mechanical work is developed per oxygen utilized. Amino acids potentially c...
متن کاملEffects of normobaric hyperoxia pretreatment on ischemia-reperfusion injury in regional ischemia model of isolated rat heart
Abstract Introduction: Resent studies have been shown beneficial effects of hyperoxia pretreatment against ischemia-reperfusion injury in different organs. The aim of the present study was to investigate early and late effects of normobaric hyperoxia (≥95% O2) pretreatment on ischemia-reperfusion injuries in isolated rat hearts. Methods: Following 60 and 180 minutes of hyperoxia, rat hearts w...
متن کاملEtomoxir, a Carnitine Palmitoyltransferase I Inhibitor, Protects Hearts From Fatty Acid- Induced Ischemic Injury Independent of Changes in Long Chain Acylcamitine
Fatty acids are known to increase the severity of injury during acute myocardial ischemia. In this study, we determined the effects of a carnitine palmitoyltransferase I inhibitor, ethyl 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate (Etomoxir) on reperfusion recovery of fatty acid perfused hearts. Following a 25-minute period of global ischemia, isolated working hearts reperfused with 1.2 m...
متن کاملEtomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine.
Fatty acids are known to increase the severity of injury during acute myocardial ischemia. In this study, we determined the effects of a carnitine palmitoyltransferase I inhibitor, ethyl 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate (Etomoxir) on reperfusion recovery of fatty acid perfused hearts. Following a 25-minute period of global ischemia, isolated working hearts reperfused with 1.2 m...
متن کاملFatty acid metabolism and contractile function in the reperfused myocardium. Multinuclear NMR studies of isolated rabbit hearts.
The hypothesis that substrate availability can alter contractile function in reperfused myocardium after global ischemia was investigated in this study. Isolated rabbit hearts were placed in a dual tuned (31P/13C) NMR probe with a 9.4-T magnet and perfused with the following substrates given individually or in combination: 10 mM glucose, 2 mM palmitate, and 2.5 mM [3-13C]pyruvate. Glucose was t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 298 5 شماره
صفحات -
تاریخ انتشار 2010